Flexible acoustic particle manipulation device with integrated optical waveguide for enhanced microbead assays.
نویسندگان
چکیده
Realisation of a device intended for the manipulation and detection of bead-tagged DNA and other bio-molecules is presented. Acoustic radiation forces are used to manipulate polystyrene micro-beads into an optical evanescent field generated by a laser pumped ion-exchanged waveguide. The evanescent field only excites fluorophores brought within approximately 100 nm of the waveguide, allowing the system to differentiate between targets bound to the beads and those unbound and still held in suspension. The radiation forces are generated in a standing-wave chamber that supports multiple acoustic modes, permitting particles to be both attracted to the waveguide surface and also repelled. To provide further control over particle position, a novel method of switching rapidly between different acoustic modes is demonstrated, through which particles are manipulated into an arbitrary position within the chamber. A novel type of assay is presented: a mixture of streptavidin coated and control beads are driven towards a biotin functionalised surface, then a repulsive force is applied, making it possible to determine which beads became bound to the surface. It is shown that the quarter-wave mode can enhance bead to surface interaction, overcoming potential barriers caused by surface charges. It is demonstrated that by measuring the time of flight of a microsphere across the device the bead size can be determined, providing a means of multiplexing the detection, potentially detecting a range of different target molecules, or varying bead mass.
منابع مشابه
Design of a new asymmetric waveguide in InP-Based multi-quantum well laser
Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...
متن کاملAll-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide.
We propose that a tapered photonic crystal waveguide design can unify optical trapping and transport functionalities to advance the controllability of optical manipulation. Subwavelength particles can be trapped by a resonance-enhanced field and transported to a specified position along the waveguide on demand by varying the input wavelength. A simulated transport ability as high as 148 (transp...
متن کاملMultipath trapping dynamics of nanoparticles towards an integrated waveguide with a high index contrast
Optical trapping and manipulation of nanoparticles in integrated photonics devices have recently received increasingly more attention and greatly facilitated the advances in lab-on-chip technologies. In this work, by solving motion equation numerically, we study the trapping dynamics of a nanoparticle near a high-index-contrast slot waveguide, under the influence of water flow perpendicular to ...
متن کاملDynamic manipulation of particles via transformative optofluidic waveguides
Optofluidics is one of the most remarkable areas in the field of microfluidic research. Particle manipulation with optofluidic platforms has become central to optical chromatography, biotechnology, and μ-total analysis systems. Optical manipulation of particles depends on their sizes and refractive indices (n), which occasionally leads to undesirable separation consequences when their optical m...
متن کاملStable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip
We demonstrate stable, free-space optical trapping and manipulation in an integrated microfluidic chip using counter-propagating beams. An inverted ridge-type waveguide made of SU8 is cut across by an open trench. The design of the waveguide provides low propagation losses and small divergence of the trapping beam upon emergence from the facet, and the trench designed to be deeper and wider tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2009